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S U M M A R Y  
In this paper the author solves some dual equations involving an inverse Mellin type transform. The use of these 
equations is then illustrated by their application to a crack problem in the theory of elasticity. 

1. The dual equations 

The object of this paper is to find the solution of some dual equations involving the inverse of 
the Mellin type transform HR which is defined by the equation 

H R [f(r); s]! = It s-1 + R2Sr - s -  1] f(r) dr, (1.1) 

and which was first introduced by D. Naylor in his paper [1]. 
The equations to be solved are 

H R l I A ( s )  t a n r C S ' r  ' = f ( r ) ,  R < r < a  

(1.2) 
H ~ l [ s - l A ( s ) ;  r] = O, a < r <  oe 

where ]Re (s)[< �89 and the method of solution, which is similar to the "elementary method" 
of Sneddon [2], depends on the assumption that A(s) may be written in the form 

A(s) = t~" - lp ( t " ) ( t~ -R2St -S )d t .  (1.3) 
R 

With this choice of A (s) we find, on making use of the result 

H R [ H ( t - r ) ;  s] = s - l ( t S - R 2 S t - s ) ,  IRe(s)[< ~ ,  
that fa H ~ l [ s - l A ( s ) ; r ]  = t~" - lp ( t " )d t ,  R < r < a  

r (1.4) 
O, a < r <  oc 

and hence that the second dual equation is satisfied automatically. 
Similarly, on substituting from (1.3) into the first dual equation and making use of the result 

[ (rt/R2) �89 (rt) -~" sl ~ n ( tS-R2St-S)  tan(n  s/n) , 
Ha 1-(r t /R2)"  - tn--r" ; = n 

R < t < o e ,  [Re(s)[<�89 

we find that it too will be satisfied if 

n l a  { R" 1 } 
t"-aP(t") R 2 " - r " t "  t " - r "  d t = r - ~ " f ( r ) '  a < r < R .  (1.5) 

R 
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If we now let z = t"/R", b = a"/R" and then put p equal to r"/R" and R"/r" in turn, we find that 
(1.5) is equivalent to the equation 

1 ( b h(z) dz g(p), b - l < p < b  (1.6) - -  = 

Jb-1 Z--p 

where 

h(z) = -R~"p(R"z),. 1 < z < b (1.7) 

z - lR~"p(R"z-1) ,  b - l < z < l  
and 

g(P) = p -~ f (Rp l / " ) ,  1< p < b (1.8) 
p-~ f (Rp-1 /" ) ,  b - i  < p < 1 . 

Now equation (1.6) is well known and its solution (see [3]) is given by 

1 { c _ ~ l f b  A(y)g(Y)dy} ,  (1.9) 
h ( z ) =  o, b-' y - - z  

where A (y) -- [ (b - y ) ( y -  b-  1)]~ and C is an arbitrary constant. For  the case on hand however, 
h(z -1) = - z h ( z )  and 9(p- i )=pg(p)and hence we find that 

lib C = ~ b-' Y-IA(Y)9(y)dy" (1.10) 

It now follows that 

1 i b ( z + y )  A(y)9(Y)dy (1.11) 
h(z) - 2hA(z) b-' \ z - - y~  y 

and therefore, on changing back to the original variables that 

n(R2"- t  2") ( a" n a"y" R2. i = ~  - y ) (  - )] 
p(t") n[(a"-t")(a"t"-R2")] ~ JR ~ ( t ~ - - Y ~ ~  f(Y)Y~7-1dY" 

The result is now obtained by substituting from (1.12) into (1.3). 

(1.12) 

2. An application in the theory of elasticity 

In order to illustrate the use of the equations investigated above we shall now consider the 
problem of determining the stress intensity factor and the crack energy of a pair of cracks which 
originate at the edge of a circular hole in an infinite elastic solid under longitudinal shear. 
We shall assume that the cracks and the hole are traction free and that, in cylindrical coordinates 
(r, 0, z), they are defined by the relations R < r < Rb, 0 = 0, n, - ~ < z < ~ and 0 < r_< R, 
0 < O < 2n, - Go < z < oo respectively. We assume also that as r tends to infinity, a,z tends to 
T sin O and asz to T cos O (Fig. 1). 

In the longitudinal shear problem, the fields of displacement and stress in the body under 
consideration are such that 

u r = u ~ = 0 ,  uz=w(r,O) 
ar~ = a~  = a= = aro = 0 ,  (2.1) 

# ~w Ow 
ao~ - and arz = # ~rr r ~0 

where # is the shear modulus and w is a solution of Laplace's equation 

oa w 1 Ow 1 t~ 2 w 
0r ~ + - + - 0 (2.2) r ~ r  r 2 a0  2 " 
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~=Tc ~ ~=0 
Rb 

@ @, @ 
Figure 1. 

Because of the symmetries of the problem it will be sufficient to find a function w (r, ~) which 
satisfies equation (2.2) in the region R < r < 0% 0 < 0 < �89 and which is such that 

(1) As r tends to infinity, r- ~ (Ow/O0) tends to T/# cos 0 and 

0w T 
- -  t o  - -  s i n  0 ,  
~r # 

aW(R,O)=O, 0 <  0 < l ~ z ,  (2) ~-r 

(3) ~-~gW (r, �89  R<r<oo,= 

(4) w(r, 0) = 0 ,  R b < r < o e ,  

and 

(5) ~-~W (r, 0) = 0 ,  R < r < R b  

Let wl (r, 0) be a solution of (2.2) in the given region. Let it satisfy conditions (2) and (3) and 
be O (r- x - ~) at infinity for some ~ > 0. Then, on applying the transform HR to the equation (2.2) 
and making use of the result 

[ 0 ~ wl(r,O);sl =sZff:l(s,O)_2RS+l~rl(R,O ) r rrTr 
where 

W~(s, O) = HR[w~(r, 0); r--~s], Iae(s)l < 1 (2.3) 

we find that 

d2 wl s 2 (2.4) 

It follows that 
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wl (s, O) = s -1 [A (s) cos sO + B (s) sin sO] (2.5) 

where A(s) and B(s) are arbitrary functions of s. F rom condition (3) however, we see that 

(s, o) = A(s)  cos(O- ,0s 
s cos �89 (2.6) 

and hence that 

wl(r, 0 ) =  HR 1 [ ? ) c o s ( O - � 8 9  1 cos�89 ; r  , [ R e ( s ) l < l .  (2.7) 

It is now a simple matter to show that the function 

T ( r+R2r_ l ) s ing+HR1 [_A(s ) cos (8 -~ ) s  "r]  
w(r, O) = ~ cos 2!~s ' ' (2.8) 

[Re (s)l < 1, is a solution of equation (2.2) in the region R < r < 0% 0 < O < �89 and that it satis- 
fies conditions (1), (2) and (3). If we now apply conditions (4) and (5) we find that  A (s) must  
satisfy the dual equations 

T (r+R2r-1)  HR l[A(s) t a n ~ s ; r ] = - ~  , R < r < R b  

H R t [ S - l  A(s) ; r ]=O,  Rb< r< oo (2.9) 

IRe (s)[ < 1 and hence, by the results of section 1, that 

i 
Rb 

A(s) = p(t2)(tS'R2St-S)dt 
R 

where 
2 T ( t 4 - R  4) 

P (t2) = n# [ (R 2 b 2 - t 2) (b 2 t 2 - R2) ]~ 

(2.10) 

I~ 
b [(R2b 2_y2)(b2y2 _R2)]~  

X ( t 2 _ y 2 ) ( t 2 y 2 _ R 4 )  
(y+R2y  - 1)dy . 

(2.11) 

Furthermore,  from (1.4), (2.1) and (2.8) we see that 

f "b uz(r , O) = p(t2)dt , R < r < Rb . (2.12) 
r 

We shall now calculate the stress intensity factor K and the total crack energy W which are 
defined by the equations 

K = - #  limit [2(Rb-r)]  ~ Ouz r--Rb_ ~-r (r, O) (2.13) 
and 

W =  2T ORb (l + R2r-  2)u=( r , O)dr 
j R  

respectively. 
On substituting from (2.12) into (2.13) we see that 

K = p limit [2(Rb-r)]{p(r  2) 
r ~ R b  _ 

and hence by (2.11) that 

2T'~R(b4_-a!)~ I~b (y+R2y-1)dy  
K = n \ b [(R2b2-y2)(b2y2-R2)] �89 

= Tb--~-[R(b 4_  1)]~. 

(2.14) 

(2.15) 
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S imi l a r ly ,  if we su b s t i t u t e  f r o m  (2.12) i n to  (2.14) we  f ind  t h a t  

4T2 f~b ( t4-R4)( t -R2t -1)d t  f~b[(R2b2-y2)(bZy2-R2)]�89 (y + 
W= n# [(R2b2-t2)(b2tz-g2)]  ~ ( t2-yE)(tEyZ-g 4) 

= 7zTER2( bE- 1) 2 

2 # b  2 
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